
Introduction
Mesopelagic fish larvae are a dominant component of
oceanic ichthyoplankton in various regions of the world
oceans, with most of the larvae distributed in the productive
upper 150-m layer during both day and night (Loeb, 1979;
Moser and Smith, 1993; Sassa et al., 2002). Because
mesopelagic fish larvae may compete for food resources
with larvae of commercially important fishes such as Japan-
ese anchovy (Engraulis japonicus), Japanese sardine
(Sardinops melanostictus) and Pacific saury (Cololabis
saira) (Sassa et al., 2004b; Sassa and Kawaguchi, 2005), in-
formation on the vertical distributions of mesopelagic fish
larvae is important, especially in winter and early spring
when the Kuroshio waters off southern Japan are the pri-
mary spawning and nursery grounds for anchovy, sardine
and saury (Odate and Hayashi, 1977; Konishi, 1980; Fu-
nakoshi, 1984; Kuroda, 1991). The aim of the present study
was to examine the vertical distributions of the five most
abundant species in the larval mesopelagic fish assemblage
during the winter, i.e. three species or types of myctophidae

(Myctophum asperum, Notoscopelus japonicus and Dia-
phus slender type), one species of Bathylagidae (Lipolagus
ochotensis), and one species of Gonostomatidae (Sigmops
gracilis) (Sassa et al., 2004b). The size-depth distributions
of the five chosen species or types were also studied to elu-
cidate ontogenetic vertical migrations. Our study provides
the first record of vertical distributions of N. japonicus
larvae and small larvae (�15 mm) of L. ochotensis and S.
glacilis.

Materials and Methods
Four series of samples were taken during daytime and
nighttime, respectively, in the Kuroshio Current region off
Shikoku (�2000 m depth), Japan, from the Research Vessel
‘Shunyo-Maru’ (National Research Institute of Far Seas
Fisheries) during 28–29 February 1996 (Table 1, Fig. 1).
Tows conducted between 1 h after sunrise and 1 h before
sunset, and between 1 h after sunset and 1 h before sunrise,
were considered daytime and nighttime samples, respec-
tively. During sampling, the ship drifted with the current in
an attempt to stay within the same water mass. A multilayer
depth sampler (MTD net; Motoda, 1971) was towed hori-
zontally at 1.0 m s�1 at each of six target depths (0, 10, 30,
60, 100 and 150 m) for 30 min. The net had a mouth 
diameter of 56 cm and a mesh size of 0.33�0.33 mm (Mo-
toda, 1971). The volume of water filtered by each net tow
was measured with a flowmeter mounted at the net mouth.
The mean�standard deviation (S.D.) of water volume fil-
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tered was 360.0�205.9 m3 (range: 158.6–1638.2 m3). A
Conductivity–Temperature–Depth (CTD) profiler cast was
made down to 1000 m at the start and end of sampling.
Samples were fixed in 10% buffered formaldehyde seawater
whilst at sea.

All fish larvae collected were sorted and counted.
Body lengths were measured to the nearest 0.1 mm on indi-
viduals of the five most abundant mesopelagic species; no-
tochord length was measured on preflection larvae, and
standard length was measured on flection and postflection
larvae. Larval ‘concentration’ (indiv. 1000 m�3 filtered sea-
water in each depth layer) was used to describe and com-
pare larval distributions by depth. To obtain the average
features of day-night vertical distribution patterns, the verti-
cal distributions were depicted as average values during the

day and night, respectively. For a quantitative comparison
of day and night depth distributions, we calculated abun-
dance (indiv. m�2) of the five chosen larvae at 0–10, 10–30,
30–60, 60–100 and 100–150-m layers during daylight and
nighttime, respectively, using trapezium rule. Then the
depths (D) at which 25, 50 and 75% of the population oc-
curred (beginning at the shallowest depth where the species
was found) were calculated (D25%, D50% and D75%; Pennak,
1943). A larval distribution center for each species or type
was defined as the depth of D50%, and also as the depth at
which 50% of the total catch occurred (i.e., between D25%

and D75%).

Results
Oceanographic features
Vertical temperature and salinity profiles down to 200 m
depth were similar on 28 and 29 February 1996, suggesting
that all sampling was conducted in the same water mass
(Fig. 2). CTD data indicated a mixed layer in the upper
80 m, where temperature was 19.5–20.0°C and salinity was
34.8–34.9, conditions typical of winter vertical profiles in
the Kuroshio region (Kawai, 1972). Temperature and salin-
ity gradually decreased to 16.7–17.3°C and 34.7, respec-
tively, in the transition from 80 to 200 m depth (Fig. 2).
Vertical distribution
The five mesopelagic fish larvae accounted for 53.2% of the
total abundance of fish larvae in the 0–150-m layer. Al-
though the mean night catches of each larval species in
each depth layer were sometimes significantly higher than
during the day (Mann–Whitney U-test, p�0.05), their verti-
cal distribution patterns were not significantly different be-
tween day and night for both D50% and D25–75%. Further-
more, the shape of the vertical distributions for each species
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Table 1. Sampling data in the Kuroshio Current region.

Sampling locality
Date, Time Day/
1996 (horizontal tow) Night Latitude Longitude 

(N) (E)

28 Feb 13:01–13:31 Day 32°49.4� 134°13.6�

28 Feb 15:01–15:31 Day 32°50.8� 134°19.9�

28 Feb 17:08–17:38 Day 32°49.2� 134°14.8�

28 Feb 19:06–19:36 Night 32°51.9� 134°19.9�

28 Feb 21:00–21:30 Night 32°51.7� 134°19.7�

28 Feb 22:59–23:29 Night 32°51.9� 134°19.9�

29 Feb 01:01–01:31 Night 32°53.5� 134°19.6�

29 Feb 08:00–08:30 Day 32°49.2� 134°12.8�

Figure 1. Sampling location (solid star; 32°49�–32°54�N,
134°13�–134°20�E) off Shikoku, Japan, from 28 to 29 Febru-
ary 1996. The solid grey line denotes the Kuroshio Current
axis (Japan Coast Guard, 1996).

Figure 2. Vertical profiles of water temperature (°C) and salin-
ity at the sampling station in the Kuroshio Current region.
Solid line: 28 Feb, Dashed line: 29 Feb.



between day and night was almost similar to each other,
suggesting an absence of diel vertical migration (Table 2,
Fig. 3). Over 50% of Diaphus slender type, N. japonicus,
M. asperum and L. ochotensis larvae were collected in the
25–80-m (18.7–20.1°C), 30–75-m (18.8–20.1°C), 35–80-m
(18.7–20.1°C) and 30–100-m (18.4–20.1°C) layers, respec-
tively, indicating considerable overlap in species depth dis-
tributions within the mixed layer above 80 m (Table 2, Fig.
3). The peak abundance of S. gracilis larvae was in the
55–100-m layer (18.4–19.5°C), spanning the bottom of the
mixed layer to the top of the thermocline. This indicates
that vertical distribution of this species also partly over-
lapped with other four larvae in the mixed layer. 

The shallowest depth distributions of the five species
were 10 m or 30 m in the day, but moved up to 0 m at night.
This suggests that the upper limits of the depth distributions
do slightly shift to shallower waters at night, or net avoid-
ance rate in the shallower waters decreased at night (Fig. 3).
However, these shifts were very small scale and did not af-
fect the overall vertical distribution patterns of abundance.
Size distribution
Body length of Diaphus slender type, N. japonicus, M. as-
perum, L. ochotensis and S. gracilis larvae were 3.1–9.6
(5.3�1.3, mean�S.D.), 2.1–8.9 (4.3�1.2), 1.8–7.9 (3.2�

1.1), 2.8–16.0 (6.5�2.9) and 4.7–14.9 (7.7�2.3) mm, re-
spectively. Of these, the mean body lengths of M. asperum,
S. gracilis and L. ochotensis were significantly larger in the
100–150-m layer than in the 0–60-m layer in both day and
night samples (Mann–Whitney U-test, p�0.05, Fig. 4). A
similar result was also observed for Diaphus slender-type
larvae at night (Mann–Whitney U-test, p�0.05) although
they were not present in the samples taken at 150-m depth
in the daytime. For N. japonicus larvae, the mean body
lengths were also significantly larger for individuals in the
100–150-m layer than in the 0–60-m layer at night
(Mann–Whitney U-test, p�0.05, Fig. 4). Day samples of N.
japonicus larvae were very small and restricted to the 0–60-
m layer (Fig. 3). There was no significant size difference
between day and night in the 0-, 10-, 30- and 60-m layers in
any species or type (Mann–Whitney U-test, p�0.05). For
M. asperum, S. gracilis and L. ochotensis larvae, the mean
body lengths in the 100- and 150-m layers were also similar
between day and night (Mann–Whitney U-test, p�0.05).

Discussion
The day–night differences in abundance of each species
probably indicate diel changes in net avoidance and/or
patchiness because the swimming ability of larvae is gener-
ally reduced at night by swim bladder inflation (Uotani,
1973; Hunter and Sanchez, 1976), possibly resulting in re-
duced patchiness at night. Since all of these larval species
or types within size range collected in this study are rarely
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Vertical distribution of mesopelagic fish larvae

Table 2. The depth at which 50% of the total catch occurred
(D25%–D75%) and 50% of the population resided (D50%) for
the five mesopelagic fish larvae in the Kuroshio Current re-
gion.

Species or types Day Night

D25%–D75% D50% D25%–D75% D50%

Diaphus slender type 25–53 41 26–79 46
Notoscopelus japonicus 32–68 48 28–73 48
Myctophum asperum 35–80 55 40–79 59
Lipolagus ochotensis 39–97 61 30–90 57
Sigmops gracile 59–99 79 56–100 79

Figure 3. Vertical distributions of larval concentrations in the
Kuroshio Current region, 28–29 February, 1996. (a) Diaphus
slender type, (b) Notoscopelus japonicus, (c) Myctophum as-
perum, (d) Lipolagus ochotensis, and (e) Sigmops gracilis.
Horizontal bars indicate�standard errors (n�4). Open cir-
cles with thin lines are for daytime; solid circles with thick
lines are for nighttime.Vertical thick bars indicate the depth
range of mixed layer (0–80 m depth).



distributed below 150 m depth except for N. japonicus
(Loeb, 1979; Miya, 1995; Sassa et al., 2004a; Sassa and
Kawaguchi, 2006), increase in their abundance in the
0–150-m layer at night may not be due to their diel vertical
migration between meso- and epipelagic zone. The Lampa-
nyctinae myctophid N. japonicus is endemic to the western
North Pacific and its larvae mostly occur in the Kuroshio
region off southern Japan during the winter (Willis et al.,
1988; Sassa et al., 2004b). Vertical distributions of the ba-

thylaguid L. ochotensis and the gonostomatid S. gracilis
were reported for large larvae larger than 15 mm (Miya,
1995; Sassa and Kawaguchi, 2006). Large larvae of these
species (�15 mm) are mainly distributed in the 200–1000-
m layers, and small larvae of these species (�15 mm) are
not captured below 200 m depth (Miya, 1995; Sassa and
Kawaguchi, 2006), suggesting ontogenetic vertical migra-
tions from epipelagic to mesopelagic zone. 

Amongst the myctophids, larvae of the subfamily
Myctophinae were generally distributed deeper than those
of the Lampanyctinae in areas where thermal stratification
occurred at depths shallower than 100 m (Loeb, 1979;
Moser and Smith, 1993; Sassa et al., 2002, 2004a). In sum-
mer, Kuroshio waters are stratified in the epipelagic zone,
and the larvae of Myctophinae, including M. asperum, were
distributed primarily in the 50–100-m layer (21–25°C); lar-
vae of Lampanyctinae, including Diaphus slender type,
were in the 20–30-m layer (25–26°C), showing clear verti-
cal segregation of habitats (Sassa et al., 2002). In contrast,
the present result showed that the winter vertical distribu-
tions of Myctophinae and Lampanyctinae larvae largely
overlapped in the 35–75-m layer in daytime and nighttime.
In the Kuroshio region in winter, vertical kinematic viscos-
ity in the mixed layer above ca. 80-m depth is estimated to
be 10–1000 cm2 s�1 (Tanaka, 1992; Tanaka and Franks,
2008). This likely indicates that co-occurrence of Myc-
tophinae and Lampanyctinae larvae in this study resulted
from vertical mixing. However, the main distribution depths
of Myctophinae and Lampanyctinae larvae exceed 20 m in
both winter and summer (Sassa et al., 2002, present study).
Considering that vertical visibility below the sea surface is
generally 20–30 m year-round in the Kuroshio waters
(Hakodate Marine Observatory, http://www.hakodate-jma.
go.jp/), light conditions may affect the upper limit of main
distribution depths of these larvae. This suggests that verti-
cal distributions of these larvae are not simply the result of
passive transport in turbulent water, but rather a partially
active choice of depth by species.

The present result showed that body sizes of all
mesopelagic fish larvae were significantly larger in the ther-
mocline than in the mixed layer. Similar vertical distribu-
tion patterns of mesopelagic fish larvae also occur in vari-
ous regions of major oceans (Clarke, 1973; Badcock and
Marrett, 1976; Loeb, 1979; Badcock and Araujo, 1988;
Miya, 1995). Such migrations would be adaptive for the
vulnerable larval stage because densities of their potential
predators (e.g., small epipelagic fishes) generally decrease
with depth, and physical conditions below the mixed layer
are stable. This form of ontogenetic vertical migration may
be also closely related to vertical difference in prey environ-
ments between the mixed layer and thermocline. Knowl-
edge on vertical distribution of prey species and prey size
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Figure 4. Mean body lengths of larvae by habitat depth in the
Kuroshio Current region. (a) Diaphus slender type (n�137),
(b) Notoscopelus japonicus (n�454), (c) Myctophum aspe-
rum (n�963), (d) Lipolagus ochotensis (n�254), and (e) Sig-
mops gracilis (n�445). Horizontal bars indicate�standard
deviations. Vertical thick bars indicate the depth range of
mixed layer (0–80 m depth). Open circles are for daytime,
solid circles are for nighttime.



spectrum, and relationship between size of consumed prey
and larval size is badly needed to estimate adaptive mean-
ing of their ontogenetic migration. 
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冬季の黒潮流域における中層性魚類仔魚の鉛直分布

渡邉　光 1†，佐々千由紀 2，石田　実 3

冬季の黒潮流域で優占する中層性魚類仔魚5種の鉛直分布
を明らかにした．各種とも鉛直分布パターンに昼夜差はみ
られなかった．Diaphus slender typeは 25–80 m層，オオク
チイワシは 30–75 m層，アラハダカは 35–80 m層を中心に
分布しており，これらの仔魚の分布は表層混合層内
（0–80 m層）で大きく重なっていた．ソコイワシとヨコエ
ソはそれぞれ表層混合層から水温躍層にかけての30–100 m

層，55–100 m層に分布中心があり，混合層内で他の3種と

分布が重複していた. 表層が成層している夏季には中層性
魚類仔魚の分布水深が種間で異なるという既存の知見を考
慮すれば，冬季におけるこれらの仔魚の鉛直分布の重複は，
80 m以浅の表層水温の成層構造の崩壊と密接に関連してい
ると考えられる．また各種の仔魚の水温躍層内の体長は混
合層内のそれに比べて有意に大きく，成長に伴う中層への
移動が示唆された．
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